Mula sa Wikipedia, ang malayang ensiklopedya
Ang Deribatibo ng mga punsiyong trigonometriko ay ginagamit sa paghanap ng deribatibo ng isang punsiyon na trigonometriko .
(
sin
x
)
′
=
cos
x
{\displaystyle (\sin x)'=\cos x\,}
(
sin
−
1
x
)
′
=
1
1
−
x
2
{\displaystyle (\sin ^{-1}x)'={1 \over {\sqrt {1-x^{2}}}}\,}
(
cos
x
)
′
=
−
sin
x
{\displaystyle (\cos x)'=-\sin x\,}
(
cos
−
1
x
)
′
=
−
1
1
−
x
2
{\displaystyle (\cos ^{-1}x)'=-{1 \over {\sqrt {1-x^{2}}}}\,}
(
tan
x
)
′
=
sec
2
x
=
1
cos
2
x
=
1
+
tan
2
x
{\displaystyle (\tan x)'=\sec ^{2}x={1 \over \cos ^{2}x}=1+\tan ^{2}x\,}
(
tan
−
1
x
)
′
=
1
1
+
x
2
{\displaystyle (\tan ^{-1}x)'={1 \over 1+x^{2}}\,}
(
sec
x
)
′
=
sec
x
tan
x
{\displaystyle (\sec x)'=\sec x\tan x\,}
(
sec
−
1
x
)
′
=
1
|
x
|
x
2
−
1
{\displaystyle (\sec ^{-1}x)'={1 \over |x|{\sqrt {x^{2}-1}}}\,}
(
csc
x
)
′
=
−
csc
x
cot
x
{\displaystyle (\csc x)'=-\csc x\cot x\,}
(
csc
−
1
x
)
′
=
−
1
|
x
|
x
2
−
1
{\displaystyle (\csc ^{-1}x)'=-{1 \over |x|{\sqrt {x^{2}-1}}}\,}
(
cot
x
)
′
=
−
csc
2
x
=
−
1
sin
2
x
=
−
(
1
+
cot
2
x
)
{\displaystyle (\cot x)'=-\csc ^{2}x={-1 \over \sin ^{2}x}=-(1+\cot ^{2}x)\,}
(
cot
−
1
x
)
′
=
−
1
1
+
x
2
{\displaystyle (\cot ^{-1}x)'=-{1 \over 1+x^{2}}\,}
Ang mga deribatibo sa taas ay matatamo sa pamamagitan ng pamamaraan ng diperentasyon na "diperensiyang kosiyente"(difference quotient)
Ang pormula ng diperensiyang kosiyente ay:
f
′
(
x
)
=
lim
h
→
0
f
(
x
+
h
)
−
f
(
x
)
h
{\displaystyle f'(x)=\lim _{h\to 0}{\frac {f(x+h)-f(x)}{h}}}
,
Ang deribatibo ng cos x ay matatamo sa pamamagitan ng sumusunod:
f
(
x
)
=
sin
x
{\displaystyle f(x)=\sin {x}\,\!}
f
′
(
x
)
=
lim
h
→
0
sin
(
x
+
h
)
−
sin
x
h
{\displaystyle f'(x)=\lim _{h\to 0}{\sin(x+h)-\sin {x} \over h}}
Depinisyon ng deribatibo
=
lim
h
→
0
cos
(
x
)
sin
(
h
)
+
cos
(
h
)
sin
(
x
)
−
sin
(
x
)
h
{\displaystyle =\lim _{h\to 0}{\cos(x)\sin(h)+\cos(h)\sin(x)-\sin(x) \over h}}
identidad ng trigonometriya
=
lim
h
→
0
cos
(
x
)
sin
(
h
)
+
(
cos
(
h
)
−
1
)
sin
(
x
)
h
{\displaystyle =\lim _{h\to 0}{\cos(x)\sin(h)+(\cos(h)-1)\sin(x) \over h}}
ipaktor
=
lim
h
→
0
cos
(
x
)
sin
(
h
)
h
{\displaystyle =\lim _{h\to 0}{\cos(x)\sin(h) \over h}}
+
lim
h
→
0
(
cos
(
h
)
−
1
)
sin
(
x
)
h
{\displaystyle +\lim _{h\to 0}{(\cos(h)-1)\sin(x) \over h}}
ihiwalay ang mga solusyon
=
cos
x
×
1
+
sin
x
×
0
{\displaystyle =\cos {x}\,\!\times 1+\sin {x}\,\!\times 0}
ilapat ang hangganan
=
cos
x
{\displaystyle =\cos {x}\,\!}
resultang deribatibo
Ang deribatibo ng cos x ay mahahango sa pamamagitan ng sumusunod:
f
(
x
)
=
cos
x
{\displaystyle f(x)=\cos {x}\,\!}
f
′
(
x
)
=
lim
h
→
0
cos
(
x
+
h
)
−
cos
x
h
{\displaystyle f'(x)=\lim _{h\to 0}{\cos(x+h)-\cos {x} \over h}}
Depinisyon ng deribatibo
=
lim
h
→
0
cos
(
x
)
cos
(
h
)
−
sin
(
h
)
sin
(
x
)
−
cos
(
x
)
h
{\displaystyle =\lim _{h\to 0}{\cos(x)\cos(h)-\sin(h)\sin(x)-\cos(x) \over h}}
identidad na trigonometriko
=
lim
h
→
0
cos
(
x
)
(
cos
(
h
)
−
1
)
−
sin
(
x
)
sin
(
h
)
h
{\displaystyle =\lim _{h\to 0}{\cos(x)(\cos(h)-1)-\sin(x)\sin(h) \over h}}
ipaktor
=
lim
h
→
0
cos
(
x
)
(
cos
(
h
)
−
1
)
h
{\displaystyle =\lim _{h\to 0}{\cos(x)(\cos(h)-1) \over h}}
−
lim
h
→
0
sin
(
x
)
sin
(
h
)
h
{\displaystyle -\lim _{h\to 0}{\sin(x)\sin(h) \over h}}
ihiwalay ang mga termino
=
cos
x
×
0
−
sin
x
×
1
{\displaystyle =\cos {x}\,\!\times 0-\sin {x}\,\!\times 1}
ilapat ang hangganan
=
−
sin
x
{\displaystyle =-\sin {x}\,\!}
resultang deribatibo
Ang deribatibo ng sin x at cosine x ay:
Derivatibo ng Sine at Cosine
d
d
x
sin
(
x
)
=
cos
(
x
)
{\displaystyle {\frac {d}{dx}}\sin(x)=\cos(x)\,\!}
d
d
x
cos
(
x
)
=
−
sin
(
x
)
{\displaystyle {\frac {d}{dx}}\cos(x)=-\sin(x)\,\!}
Ang deribatibo ng tangent x ay mahahango sa pamamagitan ng sumusunod:
tan
(
x
)
=
sin
(
x
)
cos
(
x
)
{\displaystyle \tan(x)={\frac {\sin(x)}{\cos(x)}}}
Ang tangent ay kosiyente ng sin x at cos x. Kung gagamitinng ang batas kosiyente :
d
d
x
tan
(
x
)
=
cos
2
(
x
)
+
sin
2
(
x
)
cos
2
(
x
)
{\displaystyle {\frac {d}{dx}}\tan(x)={\frac {\cos ^{2}(x)+\sin ^{2}(x)}{\cos ^{2}(x)}}}
Kung gagamitin ang indentidad na trigonometrikong:
cos
2
(
x
)
+
sin
2
(
x
)
=
1
{\displaystyle \cos ^{2}(x)+\sin ^{2}(x)=1}
, ang ekspresyon ay mapapasimple:
cos
2
(
x
)
+
sin
2
(
x
)
cos
2
(
x
)
{\displaystyle {\frac {\cos ^{2}(x)+\sin ^{2}(x)}{\cos ^{2}(x)}}}
=
1
cos
2
(
x
)
{\displaystyle ={\frac {1}{\cos ^{2}(x)}}}
=
sec
2
(
x
)
{\displaystyle =\sec ^{2}(x)\,}
Derivatibo ng Tangent
d
d
x
tan
(
x
)
=
sec
2
(
x
)
{\displaystyle {\frac {d}{dx}}\tan(x)=\sec ^{2}(x)\,\!}
Para mahahango ang deribatibo ng secant, gagamitin uli natin ang batas kosiyente :
sec
(
x
)
=
1
cos
(
x
)
{\displaystyle \sec(x)={\frac {1}{\cos(x)}}}
d
d
x
sec
(
x
)
=
d
d
x
1
cos
(
x
)
=
cos
(
x
)
d
1
d
x
−
1
d
cos
(
x
)
d
x
cos
(
x
)
2
=
cos
(
x
)
0
−
1
(
−
sin
(
x
)
)
cos
(
x
)
2
{\displaystyle {\begin{aligned}{\frac {d}{dx}}\sec(x)&={\frac {d}{dx}}{\frac {1}{\cos(x)}}\\&={\frac {\cos(x){\frac {d1}{dx}}-1{\frac {d\cos(x)}{dx}}}{\cos(x)^{2}}}\\&={\frac {\cos(x)0-1(-\sin(x))}{\cos(x)^{2}}}\end{aligned}}}
Ang resulta:
d
d
x
sec
(
x
)
=
sin
(
x
)
cos
2
(
x
)
{\displaystyle {\frac {d}{dx}}\sec(x)={\frac {\sin(x)}{\cos ^{2}(x)}}}
Kung pasisimplehin:
Derivatibo ng Secant
d
d
x
sec
(
x
)
=
sec
(
x
)
tan
(
x
)
{\displaystyle {\frac {d}{dx}}\sec(x)=\sec(x)\tan(x)\,\!}
Kung gagamitin ang parehong pamamaraan sa cosecant:
csc
(
x
)
=
1
sin
(
x
)
{\displaystyle \csc(x)={\frac {1}{\sin(x)}}}
Ang resulta ay:
Derivatibo ng Cosecant
d
d
x
csc
(
x
)
=
−
csc
(
x
)
cot
(
x
)
{\displaystyle {\frac {d}{dx}}\csc(x)=-\csc(x)\cot(x)\,\!}
Kung gagamitin ang parehong pamamaraan sa cotangent na ginamit sa tangent, ang resulta ay:
Derivatibo ng Cotangent
d
d
x
cot
(
x
)
=
−
csc
2
(
x
)
{\displaystyle {\frac {d}{dx}}\cot(x)=-\csc ^{2}(x)\,\!}
Kung ang trigonometrikong punsiyon ay inilalapat sa isa pang punsiyon, o sa ibang salita ay ang isang punsiyon ay nasa loob ng isang trigonometrikong punsiyon, ang deribatibo ay mahahanap gamit ang patakarang kadena .